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The present series of studies is concerned with low-Reynolds-number flow in 
general; the main objective is to develop an effective method of solution for 
arbitrary body shapes. In  this first part, consideration is given to the viscous 
flow generated by pure rotation of an axisymmetric body having an arbitrary 
prolate form, the inertia forces being assumed to have a negligible effect on the 
flow. The method of solution explored here is based on a spatial distribution of 
singular torques, called rotlehs, by which the rotational motion of a given body 
can be represented. 

Exact solutions are determined in closed form for a number of body shapes, 
including the dumbbell profile, elongated rods and some prolate forms. In  the 
special case of prolate spheroids, the present exact solution agrees with that of 
Jeffery (1922), this being one of very few cases where previous exact solutions 
are available for comparison. The velocity field and the total torque are derived, 
and their salient features discussed for several representative and limiting 
cases. The moment coefficient Cl,, = 1M/(87r,uo,ab2) ( M  being the torque of an 
axisymmetric body of length 2a and maximum radius b rotating at angular 
velocity w,, about its axis in a fluid of viscosity ,u) of various body shapes so 
far investigated is found to lie between Q and 1, usually very near unity for not 
extremely slender bodies. 

For slender bodies, an asymptotic relationship is found between the nose 
curvature and the rotlet strength near the end of its axial distribution. It is 
also found that the theory, when applied to slender bodies, remains valid a t  
higher Reynolds numbers than was originally intended, so long as they are 
small compared with the (large) aspect ratio of the body, before the inertia 
effects become significant. 

1. Introduction 
In  physical and biological science, and in engineering, there is a wide range of 

problems of interest concerning the flow of a viscous fluid in which a solitary 
or a large number of bodies of microscopic scale are moving, either being carried 
&out passively by the flow, such as solid particles in sedimentation, or moving 
actively as in the locomotion of micro-organisms. In  the case of suspensions 
containing small particles, the presence of the particles will influence the bulk 
properties of the suspension, which is a subject of general interest in rheology. 
In  the motion of micro-organisms, the propulsion velocity depends critically 
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on their body shapes and modes of motion, as evidenced in the flagellar and 
ciliary movements and their variations. 

A common feature of these flow phenomena is that the motion of the small 
objects relative to the surrounding fluid has a small characteristic Reynolds 
number Re. Typical values of Re may range from order unity, for sand particles 
settling in water, for example, down to 10-2-10-6, for various micro-organisms. 
In  this low range of Reynolds numbers, the inertia of the surrounding fluid 
becomes insignificant compared with viscous effects and is generally neglected. 
The Stokes-flow problem so formulated is usually very difficult; not many exact 
or even approximate solutions are available except for the simplest body shapes, 
such as the sphere, ellipsoids and elongated rods (see, for example, Lamb 1932; 
Happel & Brenner 1965; Batchelor 1967, $4.9).  

In the limiting case of elongated bodies, which is especially important in 
flagellar propulsion, the theoretical development based on the same simplifica- 
tion (as stated above) has led to the so-called ‘resistive theory’ (see Lighthill 
1969). This simple theory states that the force between a small longitudinal 
segment of a body and the surrounding fluid is resistive and viscous in origin, 
depending primarily on the instantaneous value of the velocity of that body 
section relative to its surrounding fluid. The resistive theory of propulsion was 
first considered by Hancock (1953), subsequently developed by Gray & Hancock 
(1955) for planar wave motions of an elongated cylinder and later extended by 
Chwang & Wu (1971, 1974) to include the angular momentum for helical move- 
ments of flagella. For the general case of bodies of arbitrary shape, however, only 
the asymptotic behaviour of the flow field at large distances has been discussed 
(see, for example, Oseen 1927; Lagerstrom 1964; Batchelor 1967); the details 
of an exact or approximate solution near a given body are nevertheless still 
required for the determination of the force and torque on the body in question. 

The purpose of the present series of studies is to develop an effective method 
by which a number of exact solutions can be determined for both the rotational 
and translational motion of axisymmetric bodies with shapes covering several 
categories that can be easily extended to arbitrary-form computations. The 
method is based on a spatial distribution of singular forces (Stokeslets), torques 
(rotlets) and other types of flow singularities (doublets, stresslets, etc.) for possible 
representation of given motion of a solid. In  comparison with classical methods 
for boundary-value problems, this method appears to be more powerful since it 
does not depend so critically on an optimum choice of co-ordinate system, or 
on a possible separation of variables, as in the boundary-problem approach. It 
is hoped that these exact solutions will guide approximate theories in general. 

This first part of the series deals with the rotational motion of a class of 
axisyrnmetric bodies, including dumbbell-shaped bodies, elongated rods and 
certain prolate forms. Exact solutions have been determined in closed form for 
these cases. Of particular significance is the special case of prolate ellipsoids of 
revolution since this is a rare case where exact solutions of Edwardes (1893) and 
Jeffery (1922), both solutions being based on the boundary-value method, are 
available for comparison. The translational motion of bodies of arbitrary form 
will be analysed in a future part. 
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2. Vortical flow at low Reynolds number with solenoidal forces 
The class of incompressible viscous flows to be considered here is characterized 

by the features that (i) inertial effects are negligible at sufficiently low Reynolds 
numbers, and (ii) the external forcing function, F(x) say, is solenoidal, that is 

(1) V.F = 0, 

x being the position vector in a three-dimensional Euclidean space E,, which is 
taken to be unbounded. The flow velocity u(x) and pressure p(x) then satisfy 
the Stokes equations v.u = 0, (2) 

Vp = pV2u + F(x), F(x) = 4 ~ p V  x ~L(x), ( 3) 

where p is the constant viscosity coefficient and F = 4vpV x 5L is the extraneous 
force per unit volume of E,, now specified in terms of a vector potential pQ 
(a having the dimensions of vorticity). We further require that 

Iui -to, p + p m  as 1x1 3 co. (4) 

The general purpose here is to seek the flow u due to possible rotation of a solid 
body that can be represented by a distribution of potentials sl(x). 

The pressure corresponding to the class of solenoidal forces is seen to be 
harmonic and regular in the entire space, since by taking the divergence of (3) 
and making use of (Z), 

and hence, by the well-known theorem for harmonic functions (see Kellogg 1929, 

(5) p = pa = constant. chap. €9, 

We note that (5) may no longer be valid when the flow is bounded by additional 
material surfaces (e.g. a wall); such flows generally require consideration of other 
types of forces and flow singularities (see Blake & Chwang 1974). 

The case of fundamental importance is when 5L has a point singularity at 
the origin: 

y being a constant vector and S(x) the three-dimensional Dirac delta-function. 
The corresponding velocity, by virtue of (5), satisfies the equation 

v2p = 0 (0 < 1x1 2 a), 

Q(x) = Y W ,  (6) 

v%l = -4nv x (yS(x)), (7) 

which clearly has the solution 

u = V x  ($) = ‘3 (R = 1x1). 
R3 

This solution is called a ‘rotlet’; it is also called a ‘couplet’ by Batchelor (1970). 
The rotlet also results from an antisymmetric contraction of a Stokes-doublet 
(e.g. see Blake & Chwang 1974). The vorticity associated with the rotlet is 
readily deduced to be 

F L I  63 39 
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This vorticity field is seen to be completely analogous to the velocity of a potential 
doublet of strength y; the vortex lines of a rotlet therefore resemble the stream- 
lines of an isolated dipole (of equal magnitude). 

Physically, (8) provides the velocity generated by a sphere of radius a rotating 
about the y axis with angular velocity wo = y/a3, where y = (y(, since it satisfies 
the boundary condition u = coo x x on R = a. The characteristic Reynolds 
number, based on the reference velocity at the equator, is small when 

Be = woa2/v = y/av < 1, (10) 

where v is the kinematic viscosity. This condition ensures that inertial effects 
remain insignificant for R > a. 

The torque exerted on the rotlet (or equivalently, on the sphere of radius a)  
by the surrounding fluid is 

M = - 1  x x (an) dS = - 8npy ( = - 8npa30,), (11) 
R = u  

where n is the unit outward normal a t  the surface element d8 and Q is the stress 
tensor. On the other hand, the net force acting on the rotlet (or on the rotating 
sphere), is seen, on account of the axial symmetry, to be zero. 

For a volume distribution of rotlets 8(x),  the solution can be constructed by 
linear superposition as 

u = V x A, A(x) = lVI-- d3%I, 

x-X'I 

where V denotes either a finite region or an infinite subspace of E, that encloses 
an appropriate distribution of In's. Here the velocity u has a vector potential A. 
The vorticity field, by superposition of distributions like (9), becomes 

] d3X'. (x - x') . In(x') 
lx-x'15 

q(x) = SV( - Ix-x'13 + 3(x - x') 

The total torque exerted on the system of rotlets Q(x) by the fluid, according to 
(11) and (6),  is 

M = - 8np Q(x) d3x. (14) 
S V  

Using this line of approach, the viscous flow generated by a wide class of 
axisymmetric bodies rotating about their axes of symmetry can be represented 
by an axial distribution of rotlets. In terms of the cylindrical polar co-ordinates 
(x, r ,  O ) ,  the body shape is prescribed as 

r = ro(x) ( - a  < x 6 a, ro( f a )  = 0). (15) 

We seek the representation of the body rotation about the x axis, with angular 
velocity wo, by an axial distribution of rotlets of the form (see figure 1) 

Q = e ,r (x)  6(y) +) ( -  c1 Q x G cZ), (16) 

where (ez, e,, e,) are the base vectors, r(z) is the line distribution and el and 
cz are two constants (c1,c2 Q a) .  (Obviously, c1 = cg = c say, for bodies with 
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FIGURE 1. Line distribution of rotlets of strength T(z) along the z axis in -cl < x < c,, 
representing an axisymmetric body rotating with angular velocity wo about the 2 axis. 
The body shape shown has the fore-and-aft symmetry, with I?( - z) = I?@) and c1 = c2 = c. 

fore-and-aft symmetry, i.e. when r,,(z) = ro( - x).) The corresponding velocity, 
by ( 12), has only a 8 component: u = (0, 0, u8), where 

The no-slip condition, requiring uo(x, ro (x ) )  = ooro(x) ,  now becomes 

For the 'direct problem' with a specified body profile ro(x) and angular velocity 
<do, (18) is a Predholm integral equation (of the first kind) for the rotlet strength 
r ( x )  and the parameters c1 and cg. For the 'inverse problem', (18) directly pro- 
vides the body-shape function ro(x) for given rotlet distribution r ( x )  and para- 
meters c1 and c2. Below we shall limit our discussion to rigid-body rotations, or 
wo = constant, although the general case with a differential rotation of a given 
body can still be treated within the same framework. 

The net torque exerted by the fluid on the rotating body represented by the 
rotlet distribution (16), according to (14), is M = - e ,M,  where 

This result can also be obtained by integrating the torque - 2nrEr,,(x, re) over 
a control surface r = yc > max [ro(x)], from x = - 03 to 03, r,, = ,ura(ue/r)/ar being 
the azimuthal component of the shear stress tensor. 

We now proceed to discuss a few relatively simple, yet representative cases 
of rotlet distributions, some posed as inverse and some as direct problems. 

39-2 
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FIGURE 2. A class of dumbbell-shaped bodies in rotation that can be represented 
by a pair of isolated rotlets. 

3. Dumbbell-shaped bodies 
As in the construction of Rankine bodies in potential flow by employing 

isolated sources and sinks, we take two isolated rotlets of equal strength (see 
figure Z), 

for which the boundary condition (18) becomes 

r(z) = gr ,qx+c)  ++ro6(x-c), (20) 

R-;+R-; = 2w,/r, ( r  = ro(x), 1x1 < a) ,  (21) 

R, = [(x + c ) ~  + r2]4, R, = [(z - c ) ~  + ~ 2 1 4 .  (22) where 

At the terminal points (z = & a, ro = 0) and at the dumbbell neck (X = 0, ro = d 
say) condition ( 2  1) reduces, respectively, to 

a(a2+ 3c2) (az- c2)--3 = w o /r 0 7  

(c2 + d2l-g = wo/ro. 
(23 4 
P3b) 

(UZ-C2)5  = a(a~+3c2)(c2+d2)~, (24) 

Eiimination of w o p o  between (23 a, b )  yields 

which provides a relationship between the geometric parameters c/a and dla. 
The same elimination between (21) and (23a) results in an algebraic equation 
which determines the shape function r,/a = f(x/u; c/u), which depends on one 
geometric parameter, c/a. 

The total torque acting on the dumbbell, by (19), (20) and (23), is 

N = snpr, = snpw,(c2 + d2p. (25) 

This torque is equal to that on a sphere (rotating with the same oo, see (1  1)) of 
an equivalent radius a, = (c2 + d2)) ,  which is the distance between the focal point 
(x = c, r = 0) and the neck centre (X = 0, r = d).  To facilitate a uniform com- 
parison with other cases to be discussed later, we define the torque coefficient 
C,, with reference to 87r,uwOub2, where b is the maximum radial extent, that 
is b = max [r,(x)] as determined from (21). Thus, for the dumbbell, 
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.la 
FIGURE 3. Some axisymmetric body shapes generated by a pair of rotlets. The numbers 

along the r/a axis designate the geometric parameter dla. 

dla 
FIGURE 4. Variation of the moment coefficient CM = M/8rpw,ab2, the ratio b/a of the 
maximum radius to the body length and the ratio o/a of the range of rotlet distribution to 
the body length vs. the parameter dla for the class of bodies shown in figure 3. 

Several body profiles are shown in figure 3 for various dla. The corresponding 
torque coefficient C,, the maximum-thickness-to-length ratio bla and the rotlet 
spacing cia, as computed from (26), (21) and (24), are shown in figure 4 over the 
range 0 < d/a < 1, within which the body remains in one piece. When the rotlet 
pair coalesces in the limit of vanishing c, the body becomes a sphere of radius a 
(hence b = d = a), giving the sphere result: C,, = 1. As d/a decreases from 1, 
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c/a increases monotonically to 0.556 at d = 0, b/a decreases to 0.449, while C,, 
remains in the range 0.85 < C,, < 1.  This result for Cl,, further indicates, accord- 
ing to t>he definition (26 ) ,  that the torque M is roughly equal to 8npw0ab2, within 
a maximum error of 15 yo. 

For cla > 0.556, the rotlets then become so far apart that a body composed 
of two separate pieces results, approaching the state of two isolated spheres as 
c/a --f I. In all these cases the sum of b/a and c/a is nearly unity, signifying that 
the rotlets are located approximately a t  the points where ro is maximum. 

4. Uniform axial distribution of rotlets 
We consider next the uniform distribution 

r ( x )  = Po = constant (1x1 G c). (27) 
The corresponding boundary condition (see (18)) can be integrated to yield 

where R, and R, are given by (22). For the semi-major axis (x = a, r = 0)  and 
semi-minor axis (x = 0, r = b )  in particular, (28) yields the relations 

2ac(a2-c2)-2 = wo/& ( 2 9 4  
2Cbk2(b2 + c2)-+ = wo/P0. (29b) 

Hence, (a2 - c2)2 = ab2(b2 + c2)9, (29 c )  
which relates the parameters b/u and c/a. The shape function ro = ro(x; a, c )  
is then given by (28 )  and (29). 

The torque corresponding to the uniform distribution is simply 

M = 1677,~~,!?~ = 877pwOb2(b2++2)*, 

C,, = M/8n-,uwoab2 = a-l(b2 +@)a. 

(30 )  

(31 )  
Two limiting cases are noteworthy. First, when c + 0, and Po + GO such that 

cp0 N tuoa3, as required by (29a),  the result for the sphere is recovered since 
by (29c), (28) and (31) 

The other asymptotic case, for b/a < 1, is especially significFnt, for the body then 
resembles an elongated rod. Expansion of ( 2 9 4  and ( 3  1) for small b/a yields 

or in the coefficient form, 

b = a, ( x 2 + y 2 )  = a2, CAI, = 1.  (32) 

4 
C _ -  - 1 - b - L. (!)3 + of) , 

11I = 2a +I 2 (!)2+~(:)3. a 

a 2a 64 a 

Similarly, the body shape can be deduced from (28)  

(34b) 
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xla 
FIGURE 5. A class of axisymmetric bodies represented by a uniform distribution of 

rotlets, with the sphere and a 'long rod' as limiting cases. 

where R, is the radial distance from the 'focal point' ( x  = c, r = O ) ,  as defined 
in (22), and 8, = tan-l(r/(x-c)). Thus for b/a small, the central portion of the 
body (between the foci) is nearly a straight circular cylinder, while the two ends 
are well rounded, with a local radius of curvature equal to +R2(B,) approximately. 
These salient features are borne out in the numerical results for ro(x),  as shown 
in figure 5 .  The velocity field 

( 35 a) 
has near a slender rotator the following asymptotic expansion: 

zcO = Po rBo(x, r ;  c) 

indicating that the flow in the central section behaves like a potential vortex, 
whereas i t  rotates like a solid body near the axis of symmetry 0, < 1, R, > (a - c). 
In figure 6 the velocity field given by (35) is plotted in terms of rug as a function 
of r a t  several 2 stations, the slenderness ratio being b/a = 0.1, which is small 
enough to represent an elongated body of nearly constant cross-section. It is 
of interest to note that, near the body mid-section, does not vary appreciably 
with r within a distance of a few body radii, as predicted by (35 b ) ,  and further out 
ug decreases like (x2 + r2)--1, as expected for an equivalent single rotlet. The flow 
near the two body ends exhibits a behaviour transitional between the two former 
types of flows. The overall picture indicates that a large volume of the fluid is 
induced to move with the rotating body. 

In  the limit as bla --f 0, we deduce from (30) that the torque per unit length of 
the cylinder is M,, = M/2a = 47r,uwO b2. (36) 
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FIGURE 6. Local distributions of the fluid angular momentum rue as functions of x/a and 
r /a  for two shapes of body in rotation: -, a 'long rod' (with r = constant, - c < 2 < c) ; 
- _ _  -, a prolate spheroid; both hawe the same slenderness ratio b/a = 0.1. The multiple 
scales for mc, &pe marked on the top frame line. Note the difference between the slopes of 
t4ie rue curves for these two cases. The fluid near the x axis off the body rotates like a solid 
body, and the flow a t  large distances behaves like that due to a single rotlet. 

Both this result and the corresponding velocity zc, (see equation (35 b) )  agree with 
the exact solution of the Navier-Stokes equations for the rotating circular 
cylinder. A far-reaching interpretation of this finding is now at hand: although 
we started with the assumption of low Reynolds number for arbitrary shapes, this 
restriction (on the Reynolds number) becomes decreasingly necessary, so that 
the range of validity of the theory extends to moderate and even high Reynolds 
numbers, as the slenderness parameter b/a of the rotating body (without transla- 
tion) decreases. We shall return to this point later (in 3 6). It is of basic importance 
to notice the distinction between the present reduction from three- to two- 
dimensional rotating flows and the classical Stokes paradox for translational flows. 

For arbitrary b/a, the numerical results for c/a and C, obtained from (29) 
and (31) are shown in figure 7. As b/a increases from zero, C, decreases slightly 
from its initial value of one to a minimum of 0-883 at b/a = 0.47, then gradually 
increases back to one at b/a = 1. 
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FIGURE 7 

FIGURE 7. Variations of the moment coefficient CM = M/8npwoab2 and the ratio c/a of 
the range of rotlet distribution to body length with the slenderness parameter b/a for 
bodies generated by uniform distributions of rotlets. 

FIGURE 8. The moment coefficient CM = M/8n,uwoab2 of rotating prolate spheroids with 
eccentricity e = c/a (and the ratio of minor to major axis b/a = (1 -e2)*). 

5. Parabolic rotlet distribution: rotating prolate spheroid 
Another case of basic interest is the symmetric parabolic distribution 

J3x) = P0+P2x2  (1x1 c ) ,  (37) 

PoBob T O M ;  4 +P,B,(x, r o w ;  c )  = 0 0  (1x1 4,  (38) 

for which the boundary condition (18) now becomes 

where the functions B,(x, r ;  c )  are defined as 

~ a R - 3 ( x - [ , r ) d ~  (n = 0 ,1 ,2 ) ,  ( 3 9 4  

or in the integrated form (B, is already given by (28)) 

where R, and R, are given by (22). For the inverse and direct problems (per- 
taining to a certain class of shape functions) no further discussion is necessary 
as methods for solving this kind of equation are available. Nevertheless, it is of 
both theoretical significance and practical value that the following exact solu- 
tion exists and can be expressed in a closed form. 

In an attempt to seek a class of r&) that will reduce the left-hand side of (38)  
identically to a constant, we first note that the logarithmic term in B, (see 
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equation (39c)) and the remaining part of the algebraic function in (38) must 
both reduce to  constants separately. In  fact, the logarithmic function in B, will 
assume a constant value in - a < x < a if and only if the shape function r = ro(x) 
belongs to the class of prolate spheroids 

x21a2 + r2/b2 = 1, ( 4 0 4  

where c = ae, b = (1-e2)*a, ( 4 W  

with the eccentricity e lying in 0 6 e < 1. With the shape function ro(x) SO 

determined, the left-hand side of (38) becomes independent of z provided that 

Pz = - Boic2* (41) 

r(x) = p o p  - 2 p )  (1.1 < c),  (42) 

This determines the rotlet distribution (see equation (37)) as 

which covers the range between the foci of the spheroid and vanishes a t  the end- 
points x = ? c. Under conditions (40) and (41)) (38) finally reduces to 

I - e  (43) 

which relates the parameter woa2/Po to the eccentricity of the spheroid and 
t.hereby completes our exact solution for the prolate spheroid. 

The total torque on the spheroid, by (19) and (42), is 

(44) 

(45) 

M = 33- 
3 ~ P C P O ,  

or in the coefficient form (see (26) for its definition), after making use of (43), 

C,l, = Qe3[2e - (1 - e2) log {( 1 + e ) / (  1 - e)>]-l. 

The velocity field, from (17), is readily found to be 

where R, and R, are given by (22), and Po by (43). 
The problem of an ellipsoid rotating in a Stokes flow about one of its principal 

axes was first solved by Edwardes (1892) by means of ellipsoidal harmonics, 
and was later treated by Jeffery (1922) as a component of the general motion 
of ellipsoidal particles in suspension. For an ellipsoid of revolution performing 
an axisymrnetric rotation, Jeffery’s result (which follows from his equation (36)) 
becomes 

16 npw, dh 
3 P )  (a2 + A)* (b2 + A)2’ 

L = - -  (47) 

in the original notation ( L  being the torque about the x axis, hence our M ,  and 
o1 being the anguIar velocity about the x axis, hence our wo).  Jeffery’s solution 
is found to agree exactly with the C,, given by (45) after the integral in (47) is 
carried out explicitly. (In Edwardes’s result, the numerical factor s6- in (47) 
is erroneously listed as +2; this error was first pointed out by Gans (1928), who 
apparently was unaware of Jefferg’s (1922) paper.) 
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The following features of the results are of interest. First, as the eccentricity 
e + 0, and Po .+ 00 such that eP0 N %uoa2 (as dictated by (43)), C,,, approaches one, 
the value for a sphere. On the other hand, as b/a tends to zero (or e+ l),  
C,, -+ f ,  which confirms the previous slender-body theory for rotational motions 
of Chwang & Wu (unpublished research notes), according to which the rectilinear 
rotlet density for a slender body with local cross-sectional radius ~ ( x )  and local 
axial angular velocity wo is 

Whence, by (19), the torque on a very elongated spheroid (e + 1) is 
I?@) = &oor2(x). (48) 

M = 4 ~ 7 p , b ~  j:. (1 .-$I ax = ynpuoab2, (49) 

C,, = $ (as b/a + 0). ( 50) 
or correspondingly, 

For arbitrary b/a ( < I), the value of C,,, according to (45), increases mono- 
tonically from C,, = $ at bfa = 0 to C,, = 1 a t  b/u = 1, as shown in figure 8. 

For comparison with the previous case of a constant I? distribution, the velocity 
uo given by (46 )  is plotted in figure 6 for the same ratio of b/a = 0.1 as was selected 
for the long rod. It is of significance to note that even at the mid-section (x = 0, 
ro = b ) ,  where the two body profiles differ by only a negligible amount (see 
figure 6), the rug curve of the spheroid has a non-zero slope, as opposed to the 
zero slope of the ru0 curve for the constant-I’ case. This result implies that the 
local velocity is appreciably affected by the overall body shape. 

Another point of interest concerns the relationship between the focal point 
at  x = c and the radius of curvature of the sha$e function ro(x) a t  the vertex 
x = a. Since the radius of curvature of the spheroid at  x = a is R, = a(1 -e2), 
and the distance between the vertex and the nearer focal point is u - c = a( 1 - e ) ,  
it follows that 

(51) 

In  comparison, for the case I? = constant and b/a < 1 we find (from equation 
( 3 4 b ) )  that 

The difference between the factors in (51) and 9 in (52 )  is actually related to 
the fact that the rotlet distribution r ( x )  vanishes at the terminal points x = f c 
in the former case and I’( & c )  + 0 in the latter, as will be shown below. 

For arbitrary bodies with well-rounded ends, the general relationship be- 
tween u - c and R, may be derived as follows. Confining ourselves to the case of 
fore-and-aft symmetry for the moment (with c1 = c2 = c ) ,  we can expand the 
function F(q r )  defined in (18) about the vertex x = a, r = 0 up to the quadratic 
terms, giving 

a - c = 4 R, (for an elongated spheroid). 

a - c = $R, (for an elongated ‘rod ’). (52)  

P(z,r) = ~ ( O ) + ( x - a ) P ( . ~ ) + ~ ( x - ~ ) ~ F ~ ~ + g r ~ F ~ ~  f..., (53a)  



620 A .  T. Chwang and T. Y .  Wu 
In  ( 5 3 ~ )  the terms odd in r drop out since F$!) = = 0 on account of P(x, r 
being even in r .  Upon combining (18) and (53a),  noting that F(0) = wo as required 
by the end condition at  x = a, r = 0, there results for the shape function r = ro(x) 
near the end x = a, r = 0 the expansion 

where 
Y ~ ( x )  = ~ R , ( U - Z ) + ~ ( ~ - X ) ~ + ~ ( ( U - X ) ~ ) ,  ( 5 4 4  

is the radius of curvature of ro(x) at x = a. For very elongated bodies, a - c < a, 
the asymptotic expansions of the integrals in ( 5 4 b )  (by appropriate successive 
integrations by parts) yield 

(55) 
R, 
a- c 

4 r ( C )  - *(a - c )  rye) + *(a - c)2 r" ( c )  + o((a - c ) ~ )  
3 q c )  - +(a - c )  r'(c) ++(a - c)2 rip) + o((u- ~ 1 3 )  ' 

- = (-) 
in which the primes denote differentiation. It is readily seen that (55)  reduces to 
(51) and (52) in the respective cases. For bodies not having fore-and-aft 
symmetry, (55) is also applicable to the left end at  x = -a provided that a-c 
in ( 5 5 )  is replaced by a-c l  and P ) ( c )  by Vn)( -cl). 

The above result, (54) and (55), also suggests that a representation of the class 
of bodies of revolution with pointed ends (i.e. Idr,/dXl< 00 and R, = 0 at x = a) 
can be arrived a t  by setting c = a and requiring r ( x )  to vanish like a t  
x = a so as to ensure the convergence of all the integrals involved. 

For arbitrary axisymmetric body forms, one may apply known numerical 
methods to solve the integral equation (18) for the distribution function r ( x )  
and parameters c1 and c2. A specific collocation method may be employed by 
first assuming for F(x) a polynomial distribution 

N 

7L=O 
r ( x )  = zpnxn ( - G I  G x G cz). (56) 

(For bodies with fore-and-aft symmetry we omit the terms with odd powers of 
x and set c1 = c2 = c.) Equation (18) then becomes 

where Bn(x, r ;  cl, c2) is defined by (39a)  with the limits of integration suitably 
modified (to -cl and cz). Thus, (57)  provides the implicit solution for ro(x) for 
the inverse problem when the parameters Po, p1, . . .,,ON, c1 and c2 are given. For 
the direct problem, with the shape function ro(x)  prescribed, the N f 3 unknowns 
Po, Bl, . . . , / I N ,  c1 and c2 may be determined by the collocation method after N + 3 
points xm, with -a  = xo < x1 < x2 < ... < xN+2  = a, have been appropriately 
chosen for invoking (57). The total torque on the axisymmetric body is then 
given by (19) and (56). We shall not, however, pursue this general case any further 
here. 
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6. Effects of body slenderness on the limitation oflow Reynolds number 
It remains for us to verify whether the assumption that inertia forces can be 

neglected is actually self-consistent, that is, if in the Navier-Stokes equation 

pu. vu + vp = pv2u + 4n;uv x s2 ( 5 8 )  

the inertia force pu.Vu can always be neglected uniformly in the flow field 
when the Reynolds number is small and when only solenoidali forcing functions 
are present. According to  the present solution (17), the velocity at sufficiently 
large distances behaves like a single rotlet, that is 

u = e,u,, u., N woa,3r/R3, ( 5 9 4  

where R2 = x2 + r2 and a, is the equivalent sphere radius given by 

The inertia force term pu. V u  = p(Ue/r) a(e,u,)/a6' is of order p ( ~ , a $ ) ~ / R ~ ,  and an 
estimate of the viscous force pV2u is ,uwoa!/R4. Thus the ratio of the order of 
magnitude of the neglected inertia force to that of the retained viscous force is 

This ratio is everywhere small, at  distances R N O(a,) or greater, as long as the 
Reynolds number Be < 1. 

In  the vicinity of an elongated body, the above ratio of forces is further in- 
fluenced by the body geometry, as we have noted earlier. To examine more 
critically this point, especially in connexion with relaxing the restriction on the 
Reynolds number to small values, we rewrite (58) as 

p o  x u +V(+pu2+p) = pv2u + 4rpv x P. (61) 

The present solution (which always makes the right-hand side of (61) vanish, 
see (7)) will remain a good approximation as long as the corresponding value 
of p o  x u is small relative to the order of magnitude of the viscous force pV2u 
since when this condition is satisfied we can always adjust the pressure by 
taking 

(62) 

rather than ( 5 ) .  Now, from the general solution (17) it follows that 

p + Qpu2 = constant 

a %? a o x u  = -eZ-(~ui)-er--(~u,) .  
ax r ar 

For very slender bodies, rue has been noted (see equation ( 3 5 b ) )  to be nearly 
a constant function of r in a neighbourhood of the body. Consequently, an 
estimate of the term p o  x u is a(pu$)/ax, or pug/., where 2a is the length of the 
elongated body (with slenderness parameter E = b/a < 1). Further, the viscous 
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force pB2u is seen to be of order (,uu,/b2) (1 + O(e2)). Thus, the ratio of the term 
pw x u to the viscous force becomes, in the neighbourhood of an elongated body, 

This shows that the present solution will hold, and any significant inertial effect 
can be incorporated with the pressure field by (62), if 

Re < I/€. (64) 

The upper bound Re* = I/€ of the Reynolds-number range can be large for 
c < 1. This explains the previous observation that the present solution for the 
flow near an elongated rod actually has a range of validity extending to higher 
valnes of the Reynolds number. 

This work was partially sponsored by the National Science Foundation, under 
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